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We consider here prediction of abrupt overall changes (“critical transitions”) in
the behavior of hierarchical complex systems, using the model developed in the
first part of this study. The model merges the physical concept of colliding cascades
with the mathematical framework of Boolean delay equations. 1t describes critical
transitions that are due to the interaction between direct cascades of loading and
inverse cascades of failures in a hierarchical system. This interaction is controlled
by distinct delays between switching of elements from one state to another: loaded
vs. unloaded and intact vs. failed.We focus on the earthquake prediction problem;
accordingly, the model’s heuristic constraints are taken from the dynamics of
seismicity. The model exhibits four major types of premonitory seismicity patterns
(PSPs), which have been previously identified in seismic observations: (i) rise
of earthquake clustering; (ii) rise of the earthquakes’ intensity; (iii) rise of the
earthquake correlation range; and (iv) certain changes in the size distribution of
earthquakes (Gutenberg—Richter relation). The model exhibits new features of
individual PSPs and their collective behavior, to be tested in turn on observations.
There are indications that the premonitory phenomena considered are not seismi-
city-specific, but may be common to hierarchical systems of a more general nature.
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1. INTRODUCTION

This is the second part of a study aimed at a prominent feature of hierar-
chical nonlinear complex systems: persistent recurrence of abrupt overall
changes, called here “critical transitions.” The study’s first part” intro-
duced a model for the development of critical transitions. The model is
based on the physical concept of colliding cascades, in which direct cascades
of loading interact with inverse cascades of failures to produce critical tran-
sitions.*® The mathematical framework of Boolean delay equations™®
allowed us to replace complex elementary interactions by their robust
integral effect, which takes the form of delayed switches in the state of the
system.

The model’s heuristic constraints are taken from the dynamics of seis-
micity. The seismically active crust of the Earth is regarded as a complex,
hierarchical, dissipative system and strong earthquakes as critical transitions
in the system. In ref. 1 the model was applied to the study of multiple seismic
regimes. Here, we consider the problem of predicting critical transitions.

The point of departure is provided by the studies in algorithmic pre-
diction of large earthquakes, based on analyzing seismicity in a lower
magnitude range.®® We apply the previously developed prediction algo-
rithms to the model’s seismicity. The good performance of these algorithms
in predicting synthetic seismicity confirms that the model behavior captures
essential features of observed seismicity used in developing the algorithms.
Besides, we explore new premonitory phenomena that can be tested on
observations. The major elements of our analysis are briefly described
below.

1.1. General Prediction Scheme

(1) Prediction of large earthquakes is based on the sequence of
smaller earthquakes in a given area, called a catalog

{(t,,m, h,)e=1,2,..5t, <t 1}, ¢}

here ¢, is the starting time of the rupture; m, is the magnitude—a loga-
rithmic measure of the energy released by the earthquake; and 4, is the
position vector of the hypocenter. The latter represents a point approxi-
mation of the area where the rupture started. The synthetic counterpart of
such a catalog for our model is defined in Eq. (5) of ref. 1.

(i) Premonitory seismicity patterns (PSPs) are captured by func-
tionals Fi(t,s;), k=1, 2,..., defined on the catalog (1). With a few excep-
tions, the functionals are defined in a sliding time window (¢—sy, ¢). The
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value of a functional is attributed to the end ¢ of the window. The specific
functionals F; used in this study are defined below.
Emergence of a PSP is defined by the condition

F() 2 C,. @

Here F,(2) is one of the functionals that depict the PSP; the threshold C, is
usually chosen as a certain percentile of the functional’s distribution.

(ii)) An alarm is declared for time interval of length 7, when a single
pattern or a certain combination of patterns emerges. The alarm is ter-
minated after a major earthquake occurs or the time 7, expires, whichever
comes first. The possible outcomes of such prediction are shown in Fig. 1.
Obviously this scheme lends itself to the use of other data, not necessarily
seismological ones (e.g., refs. 9 and 10).

1.2. Four Types of Premonitory Seismicity Patterns (PSPs)

Studies of observed and modeled seismicity have demonstrated that
an earthquake of magnitude m is often preceded by specific PSPs formed
within an area and magnitude range depending on m.

We consider here PSPs of the following four types (see Table I
(1) rise of seismic activity; (ii) rise of earthquake clustering; (iii) rise of
earthquake correlation range; and (iv) certain changes in the earthquakes’
size distribution (G-R relation). Patterns of the first two types have been
found in observations first and then in models;%?? patterns of the other
two types—first in models and then in observations.®? % The interme-
diate-term patterns of the first two types have been validated by statisti-
cally significant predictions of real earthquakes.®-*" Other patterns are in
different stages of testing.

).(6, 7,11-15)

Successful prediction Failure to predict

False alarm

> Time
I Correct alarm ? Predicted event
[ False alarm ? Failure to predict

“\_~ Function depicting precursor

ffffff Threshold for declaring an alarm

Fig. 1. Possible outcomes of prediction.
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Table I. Premonitory Seismicity Patterns (PSPs) Considered in this Study

Definition
Notation Description Type in the text ~ References
N, Number of events Intensity Section 3.1.1 40, 63, 61
z., Weighted number of events; Intensity Eq. (3a) 39, 63, 61
coarsely estimates the area
of faultbreaks
B, Weighted number of Clustering Eq. (7) 45
immediate aftershocks
R, Near-simultaneous occurrence Correlation Section 3.3 26
of distant events range
A, Simultaneus activation Correlation Section 3.3 27
of distinct branches range
of a system
1, Total activity of most Correlation Section 3.3 This study
active branches range
of a system
w Ratio of N,, for Transformation of Eq. (8) 63
different m GR relation

In lieu of an adequate theory, the PSPs considered here have been
found by a pattern recognition analysis of observed and/or modeled seis-
micity. This analysis is based on the methodology developed by the school
of I. M. Gelfand®** for the study of rare phenomena of highly complex
origin, a situation where classical statistical methods are inapplicable. It is
in a way akin to the exploratory data analysis developed by J. Tukey.®”

1.3. Error Diagrams

E. Fermi coined the phrase “With four exponents I can fit an elephant”
to highlight the problems generated by using too large a number of
parameters to fit a given data set. The pattern recognition approach allows
considerable freedom in the retrospective development of a prediction
algorithm. To avoid the problems highlighted by Fermi, such an algorithm
has to be insensitive to the variations in its adjustable parameters, choice
of premonitory phenomena, definition of alarms, etc. The sensitivity tests
comprise an exhaustive set of numerical experiments, which represent a
major part in the algorithm’s development.

Molchan®® introduced a particular type of error diagrams to evaluate
earthquake prediction algorithms. The definition of such an error diagram
is the following: Consider the outcomes of prediction during a time interval
of length 7. During that time interval, N strong events occurred and N, of
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them were not predicted. The number of declared alarms is 4, with A, of
them being false alarms. The total duration of alarms was D. The error
diagram shows the trade-off between the relative duration of alarms 7 =
D/T, the rate of failures to predict n = N /N, and the rate of false alarms
f =Ap/A. In the (n, 7)-plane, the straight line n+17 =1 corresponds to a
random binomial prediction—at each epoch an alarm is declared with
probability T and is not declared with probability 1 —rz.

Different points in the error diagram correspond to different variants
of a prediction algorithm. In particular, the variants may differ by the
value of the threshold for declaring an alarm (see Fig. 1): the higher the
threshold, the shorter D. On the other hand, this may lead to a higher N;.
An algorithm is useful if: (i) the prediction score is higher than the random
one, i.e., the corresponding point in the error diagram lies below the line
n+17 = 1; and (ii) this score is fairly insensitive to variations of the algorithm.

Error diagrams also provide the basis for the optimization of disaster
preparedness measures to be undertaken in response to prediction. % 3"
Error diagrams for the PSPs considered in this study are given in Section 3.

1.4. Four Paradigms

The previous studies led to the following findings that are important
for a fundamental understanding of the dynamics of seismicity, as well as
for further prediction research;”-%* (i) Long-range correlations occur in
fault system dynamics and, accordingly, premonitory phenomena arise over
large areas. (ii) There exist four types of premonitory phenomena (see
Section 1.2). (iii) These phenomena exhibit at least partial similarity
worldwide. (iv) Premonitory phenomena are dual in nature: some of them,
like the PSPs considered here, are common to a wide class of nonlinear
systems; others are specific to the geometry of a fault network or to a
certain physical mechanism that controls the stress and strength field in the
lithosphere.

The remainder of this paper is organized as follows: In Section 2 we
discuss the synthetic earthquake sequence that we study. The PSPs used
for prediction are defined in Section 3, and their individual performance
is discussed. Section 4 describes the collective performance of PSPs in the
modeled seismicity. A discussion of the results and their implications for
earthquake prediction follows in Section 5.

2. EARTHQUAKE SEQUENCE

In this study we analyze the synthetic earthquake sequence shown in
Fig. 2. It represents the model’s intermittent regime—the most interesting
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Fig. 2. Synthetic earthquake sequence, consecutively zoomed. The sequence is generated by
the colliding-cascade model of Part IV for the parameter values L=7, A=0.2-107%
A, =5-10% 4, =5-10% 4, =103 ¢=2/3, p=3, k = 3. Shadowing marks the zoomed inter-
vals. The model shows a rich variety of behavior at different time scales. Note that the entire
sequence (not shown) is 5-10° time units long and that the difference in time scales betweeen
the top and bottom panels is by a factor of 10°.

and realistic one (see ref. 1 for details). The parameter values correspond-
ing to this sequence are given in the caption to the figure; its duration is
5-10° time units.

The sequence includes 43 earthquakes with m = 7, the largest magni-
tude possible in this version of the model; they are the targets of prediction
in the subsequent analysis. Premonitory patterns for the magnitude-7 earth-
quakes are formed by the earthquakes with smaller magnitudes, from
m=6downtom=1.

In observations, one distinguishes between foreshocks, main shocks,
and aftershocks. Most of the premonitory patterns considered hare have
been defined on the sequence of main shocks. However, the number of
aftershocks is retained for each main shock. As in analyzing observations,
the few immediate foreshocks are not differentiated from the main shocks.

An aftershock is defined in the model as a descendant of a main shock
of magnitude m which occurred within 7'(m) time units from the main
shock. A descendant is a child, child of a child, etc., of a main shock within
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the system considered. In accordance with this definition, events of magni-
tude m =1, the smallest possible in the model, have no aftershocks. The
values of T'(m) for different magnitudes m of a main shock are taken here
as follows: T'(7) = 3000, T(6) = 1500, T'(5) = 600, T(4) =300, T'(3) = 150,
and 7'(2) = 70.

3. PSPS AND THEIR INDIVIDUAL PERFORMANCE

3.1. Increase of Seismic Intensity

A premonitory rise of seismic flow intensity is captured by two types
of functionals. They are described in the following two subsections.

3.1.1. Functionals 2 and N

Definitions. The following two functionals®*? depict an increase
of activity: the number N,,(¢, s) of main shocks of magnitude m within the
time interval (¢ —s, ¢) and the weighted number of main shocks

2.t 8)= i S(m') N,,(t,s). (3a)

In analyses of observed seismicity, the weight S(m2) in (3a) is proportional
to the source area of an earthquake of magnitude m. Here we use

S(m) = 10", b=1log, (3), (3b)

as suggested by the ternary hierarchical structure of our system.

Performance. We computed each of these functionals for the
sequence shown in Fig. 2 with s =3000 and m varying from 1 to 6; note
that, according to (3a), the functionals N, and X, coincide. Altogether
we consider 11 functionals that depict increase of seimic activity. Error
diagrams for prediction with these functionals are given in Figs. 3a—d.
“Quiet” intervals, with seismicity below m =4, are eliminated from con-
sideration, to avoid artificial improvement of statistics: neither strong earth-
quakes nor alarms may emerge in our model during such intervals, which
occupy 77% of the total duration of our earthquake sequence. The same is
done for all the error diagrams in Fig. 3. For advance prediction of real
earthquakes the overall performance shown in Figs. 3a—d would be quite
satisfactory.
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Fig. 3. Error diagrams for the premonitory patterns considered. The diagrams show the
tradeoff between major characteristics of prediction: the relative duration of alarms 7, the rate
of failures to predict n, and the rate of false alarms, f. Panels correspond to prediction with
different single PSPs, with n vs. 7 on the left and n vs. f on the right. (a), (b) Weighted number
of events, 2, 2<m <6 (Section 3.1.1); (c), (d) number of events N,,, m=2,...,6 (Sec-
tion 3.1.1); (e), (f) bursts of aftershocks B,, m=4,...,6 (Section 3.2); (g), (h) Accord 4,,,
m=15, 6, and IT (Section 3.3); (i), (j) correlation range R,,, m = 2,..., 6 (Section 3.3); and (k), (1)
change in magnitude distribution W (Section 3.4). For a given functional, the points in each
diagram differ from each other only by the alarm threshold (not indicated); see text for details.
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3.1.2. Accelerated Benioff Strain Release

Definition. The rise of seismic activity is also captured by the cumu-
lative Benioff stress release.® 244 It is usually defined as

)= EV*, 1<t <t 4)

Here E, is the energy and ¢, is the occurrence time of the eth earthquake.
The summation is taken over all the earthquakes in an area under consid-
eration, including aftershocks. In the analysis of observations, the energy is
estimated from the magnitude. The function €(¢) determined from obser-
vations is approximated by a power law® 4D

€(t)=A—B(t;—1)", )

where ¢ is the time of a large earthquake, targeted for prediction.
For the model we define the function €(¢) as

e(t) = i S(m') N*.(t, ). (6)

m' =1

Here N (t,s) is the number of all earthquakes, including aftershocks,
within the interval (¢ —s, ¢); S(m) was defined in (3b).

Composite Seismicity. The function e(¢) averaged over the 43
seismic cycles is shown in Figs. 4a, b. The figures confirm that the modeled
seismicity does exhibit, on average, the premonitory power-law rise of Eq. (5)
as a large earthquake approaches. Away from a large earthquake the func-
tion €(¢) is linear. The average power-law rise is accompanied by roughly
periodic oscillations, shown in Fig. 4c. The amplitude of these oscillations
grows as a large earthquake approaches (compare refs. 42 and 43).

In the present study, we do not explore the predictive skill of this
functional for individual major earthquakes.

3.2. Increase of Clustering: “Bursts of Aftershocks”

Definition. Premonitory clustering prior to large earthquakes is
captured by “pattern B” or “bursts of aftershocks.”**) It consists of a
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Fig. 4. Premonitory acceleration of cumulative Benioff stress release €(¢) vs. time to a major
event t—t,. Heavy solid (panel (a)) or filled circles (panels (b) and (c))—e(¢); light dashed
line—least square fit of a power law €(t) = A— B(¢, — )" The values of €(¢) are normalized so
that 4 = 1; the fitting curve in panels (a) and (b) corresponds to B =2.36, a = 0.55. (a) e(f) on a
linear scale; (b) e(¢) on a log-log scale; and (c) residuals, i.e., the difference between the data and
the fitting curve. Note the accelerating oscillations prior to a major earthquake in panel (c).

main shock of medium magnitude with a large number of aftershocks. One
of the functionals that depicts this premonitory phenomenon is

B.(1,0)= 3 S(m') My(m'). ™

m' =1

Here M;(m') is the number of those aftershocks of the /th main shock that
have magnitude m’, while S(m) was defined in (3b), with the exponent b
taken now from the GR relation for the aftershocks (see ref. 1). The sum-
mation is taken over the time interval ¢ after the main shock.
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The PSP “bursts of aftershocks™ depicted by the functional (7) with
b =0 is the first for which statistical significance has been rigorously estab-
lished in observed seismicity.®” In practice, aftershocks are counted within
a short time interval of 6 =2 days, while the whole aftershock sequence

may be much longer, lasting up to a year or more. We have computed B,,
with 6 = 300 for m =6, 5, and 4.

Performance. The performance of the functionals B,,m=4,5, 6,
in predicting individual earthquakes is characterized by the error diagrams
in Figs. 3e, f. The large rate of false alarms for m =5 and 4 has a natural
explanation: we concentrate only on the prediction of earthquakes with
m =7, while B; may be premonitory to earthquakes with m =6 and B, to
earthquakes with m = 6 and 5 as well.

3.3. Increase of Correlation Range

Long-Range Correlations in Observed Seismicity. The occurrence
of major earthquakes is correlated at large distances that exceed consider-
ably the size of the rupture in the earthquakes’ sources. Different manifes-
tations of this phenomenon include the large size of the areas where PSPs
are formed;" %3 the correlation of the strongest earthquakes worldwide
between themselves, and with perturbations of the Chandler wobble and
Earth rotation;®**® migration of seismicity along active faults to distances
up to 10*km;“*® and near-simultaneous occurrence of earthquakes at
large distances.“>? This phenomenon has also been reproduced in models
of seismic dynamics.*>%

The physical mechanisms responsible for long-range correlations are
summarized in ref. 7. Here we do not consider the large correlation range
per se, but concentrate on its premonitory rise. This rise has been found
in observed seismicity on the time scales of months,®® years,*”® and
decades,® as well as in colliding-cascade models.®

Definitions. We consider several patterns that reflect premonitory
increase of correlation range.

Pattern Accord®? reflects simultaneous rise of seismic activity in the
distinct major branches of the system. Our ternary model is naturally
divided into three major branches that descend from the second highest
level, corresponding to m = 6. We measure seismic activity of a branch by
the functional X¢(z, s) defined by Eq. (3a) with s =3000. The functional
Aq¢(t), which depicts the pattern Accord, is defined as the number of
branches for which X¢ simultaneously exceeds a common threshold X,.
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By definition, the functional A4(?) may assume integer values from 0
to 3; we took the alarm threshold C, for A44(¢) to be C, = 2. We considered
also a functional A;(¢) defined, similarly to A4(¢), for the nine branches
that descend from the third-highest level of the hierarchy, corresponding to
m=25; in this case we took C, =3. In the analysis of observations the
“major branches” are the fault zones comprising the region.”

Pattern II reflects the rise of activity in a sufficiently large part of the
system. It is measured by the sum I74(¢) of the activities of the two (out of
three) most active branches. As for the functional Accord, the activity of
each major branch is measured by the function X'¢(z, 3000).

Pattern ROC (“Range of Correlation”)®? captures the rise of the
distances between nearly simultaneous earthquakes. The functional
R,,(t,s), which quantifies this pattern, is defined as the number of pairs of
events with magnitude m which occur within time s from each other at the
maximal possible distance. In the model we use the ultrametric distance
along the tree,®® i.e., the minimal number of edges that connect two ele-
ments. We considered this functional with s = 5000 for magnitudes m from
2 to 6. The functional that generalizes R, (¢, s) to real observations has
been explored by Shebalin er al.?®® in the quest for short-term prediction,
since it could have a smaller lead time than other functionals considered
here. On longer time scales a similar phenomenon was reported by
Prozorov™® for California and some other regions.

Premonitory emergence of the patterns Accord and ROC has been
found first in the colliding-cascade model®? and then in observations. 2"
The premonitory rise of I7 is found for the first time in this study. An
alternative approach for detecting the rise of correlation range was
suggested by Zéller et al.®

Error diagrams for prediction with the patterns Accord, ROC and IT
are given in Figs. 3g-3j.

3.4. Change in the Size Distribution

According to refs. 24, 48, 57-59 a large earthquake with magnitude
m, is preceded by an “upward bend” of earthquake size distribution, i.e.,
a decrease of the b-value for the G-R relation in the adjacent magnitude
interval (my,—c,, my—c;), ¢; <c,. Figure 5a clearly demonstrates such a
change in the composite seismicity.

Definition. We measure this transformation by the functional

fn’=4 Nm'(t’ S)

Wit)y=————.
() fn’=1 Nm’(ta S)

®)
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Fig. 5. Premonitory change in the earthquake size distribution. (a) Magnitude distribution
of composite seismicity for two distinct time intervals prior to a large event that occurred
at ¢,. Circles: —50001 < ¢—¢, < —2000; squares: —2001 <¢—¢, <0. (b) The functional W ()
that depicts the upward bend, cf. Eq. (8).

This functional was calculated with s = 2000 for the composite seismi-
city obtained by superimposing the 43 seismic cycles, each of which culmi-
nates in a maximal-magnitude earthquake (Fig. 5b). One can see a rapid
growth of W(¢) that starts a few thousand time units before a major
earthquake; the upward-bend pattern is thus clearly present in our model.
However, the error diagram (panels (k) and (1) of Fig. 3) shows too many
false alarms produced by this functional in predicting individual earth-
quakes. This illustrates a well-known difficulty in prediction research,
where good statistical performance of a precursor does not necessary imply
reliable prediction of individual events.

3.5. Error Diagrams for Individual Patterns

Figure 3 shows error diagrams for all the PSPs defined above. In
previous sections we have defined four types of PSPs. Each pattern can
be depicted by one or several functionals in different magnitude ranges;
23 functionals have been considered altogether. Different points in the
error diagrams for a specific functional correspond to different thresholds
for declaring an alarm; in the case of the functionals 4,,(¢), different points
correspond to different thresholds 2.

The predictive skill of the functionals is better when they are defined
at higher magnitudes; this is expressed by the fact that the corresponding
points lie closer to the origin in the error diagram. Despite the large differ-
ences among the PSPs considered, the functionals defined for the same
magnitude range give a similar performance in terms of the (n, ) graph in
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the error diagram (left panels in Fig. 3); the same observation was reported
for observed seismicity in ref. 44.

As was mentioned above, the value of the threshold for declaring an
alarm plays a major role in the performance of a given PSP: the higher the
threshold, the shorter the relative duration 7 of the alarms and the higher
the rate n of failures to predict. But what happens to the fraction f of false
alarms? As one can see from Fig. 3, the PSPs are divided into two groups
according to the dependence of f on the alarm threshold. For the patterns
“bursts of aftershocks,” ROC, and “upward bend” these quantities are
threshold-independent. At the same time, for the patterns 2, N, Accord
and 71, the rate of false alarms does depend on the alarm threshold: the
higher the threshold, the lower the rate of false alarms. It is remarkable
that both threshold-dependent and -independent functionals can be defined
for the same PSP type.

4. COLLECTIVE PERFORMANCE OF PSPS

4.1. Track Record of Single PSPs

The alarms declared by each of the 23 functionals considered are jux-
taposed in Fig. 6. Each box corresponds to a large earthquake; its sequen-
tial number is indicated at the top of the box. Our earthquake sequence
includes 43 major earthquakes; for brevity we show only 10 of them. The
right edge of a box is the time of a large earthquake. The horizontal axis
shows the time before that earthquake. Each horizontal line corresponds to
a premonitory pattern depicted by a specific functional in a certain magni-
tude range; both the functional and magnitude range are indicated at the
left. Shaded areas are the alarms declared by the functional considered.

The trade-off between correct predictions and errors is controlled by
a prediction algorithm’s adjustable parameters and one tries to tune these
parameters to optimize the algorithm. The three panels in Fig. 6 correspond
to different choices of this trade-off. Each strategy minimizes one of the
following characteristics of prediction: the rate of failures to predict n (panel
(a)); the sum of errors n+7+ f (panel (b)); and the rate of false alarms f
(panel (c)). One can easily see that the lead time of precursors decreases in
that order. All the panels in Fig. 6 demonstrate the “magnitude ladder”
phenomenon: patterns defined for lower magnitudes tend to emerge earlier.

4.2. Minimax Prediction Strategies

Figures 3 and 6 clearly show that prediction by individual PSPs pro-
duces many errors. Is it possible to improve the prediction for this model,
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Fig. 6. Performance of single premonitory seismicity patterns (PSPs) prior to 10 major earth-
quakes. The figure juxtaposes the alarms generated by each of the 23 functionals considered.
Each box shows the emergence of a pattern prior to a large earthquake; the sequential index of
each event (out of a total of 43) is shown at the top of the box. The right edge of the box is the
occurrence time of a large earthquake. Each horizontal row represents the track record of a
particular functional, identified at the left side of the panel. Shaded areas show the time inter-
vals when an alarm was declared by that functional. The three panels correspond to different
prediction strategies: (a) minimization of failures to predict (n — min); (b) minimization of the
sum of errors (n+7+ f — min); and (c) minimization of the number of false alarms ( f — min).
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by a judicious combination of the functionals considered? To answer this
question, we explore the following “minimax” strategy: (i) tune the predic-
tion by an individual functional to minimize the rate of false alarms, at
the cost of a large rate of failures to predict (Fig. 6¢); and (ii) reduce the
failures to predict by combining individual predictions.

We applied this minimax strategy as follows: Six functionals, all defined
for m=6, are used for prediction; they are X, Ny, Bs, Rq, A, and Il,.
Individual alarms are declared as described in Section 1.1. A collective alarm
is declared when M out of the six possible alarms are triggered at the same
time, M = 1,..., 6. In that way we obtain six versions of our prediction, one
for each value of M. The corresponding error diagrams are shown in
Figs. 7a, b. Clearly, the number of failures to predict increases with M, while
the durations of collective alarms decrease in that order.

In the same way we consider the five functionals defined for m = 5;
they are X5, Ns, Bs, Rs, and As. The collective alarm is declared when two
individual alarms arise simultaneously. The corresponding error diagram
is shown in Figs. 7c, d. Note that, in both cases, the minimax strategy
allowed us to eliminate false alarms entirely.

Figure 7 shows that prediction can be substantially improved by com-
bining single functionals: points corresponding to the minimax strategy lie
closer to the origin than individual PSPs. The quantity n+ 7 is often used as a
measure of prediction performance.®® We show the line n+ 1 = const. in the
error diagrams for comparison. The higher the angle between this line and the
straight-line segment that connects the performance of an individual PSP with
that of the minimax strategy, the higher the improvement in predictive skill.

Our analyses confirm that, while the onsets of different patterns are
strongly correlated, the remaining discrepancy between the predictive per-
formance of various functionals can still be exploited in order to improve
overall prediction by combining them. Studies of PSPs in observed seismicity
led to a similar conclusion.*” Moreover, application of several patterns
jointly has been reasonably successful in many prediction algorithms. %
The more rigorous “minimax” strategy of combining PSPs, as tested here,
has not yet been used in practical algorithms, and seems very promising.

5. DISCUSSION

Using a Boolean delay equation (BDE) model of colliding cascades we
have reproduced in synthetic seismicity the four basic types of premonitory
seismicity patterns (PSPs), which had been previously found in observa-
tions. The model allows one to explore the individual and collective per-
formance of these patterns in different magnitude ranges, the correlation
between patterns, and a prediction strategy based on a set of PSPs.
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Fig. 7. Minimax strategy for combining individual PSPs. Error diagrams: (a), (b) Six func-
tionals defined for m = 6 are considered: X, Ny, B;, Ag, R¢, and II; an alarm is triggered
when at least M patterns emerge, M = 1,..., 6. As M increases, the total duration 7 of alarms
decreases and the ratio n of failures to predict increases. (c), (d) Five patterns defined for
m =5 are considered: X5, N5, Bs, A5, and Rs; an alarm is triggered when at least two patterns
emerge. In each case the single functionals are tuned to minimize the ratio of false alarms. The
line n+ 7 = const. is shown for comparison. See text for details.

The relevance of the model to the dynamics of seismicity is well sup-
ported by the fact that it fits the major heuristic constraints on earthquake
sequences. It is remarkable that these constraints include heuristically
defined PSPs.

We have found in the model several potentially important features of
premonitory patterns, to be tested in observations.

1. “Magnitude ladder.” The patterns defined for lower magnitudes
emerge earlier. The individual performance of lower-magnitude functionals
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is weaker, but they are important within the general scenario for the
development of a major earthquake.

2. Minimax strategy. We have developed a prediction strategy using
a minimax approach of combining individual PSPs: each pattern is tuned
to minimize the rate of false alarms, at the cost of a large rate of failures to
predict; then the failures to predict are reduced by the condition that at
least few of them have emerged (““OR” operator).

An opposite minimax strategy can also be considered: each pattern is
tuned to minimize the rate of failures to predict, at the cost of a large rate
of false alarms; then the number of false alarms is reduced by requiring
most of the patterns to have emerged (““AND”’ operator).

Such minimax strategies might be quite useful in practice, since com-
binations of several patterns are commonly involved in earthquake predic-
tion algorithms.

The emergence of distinct patterns is strongly correlated in time, in the
case of both correct and false alarms; moreover, the performance of differ-
ent patterns defined in the same magnitude range is similar. This implies
the existence of a common phenomenon that underlies the emergence of
different PSPs. Empirical evidence for the existence of such a phenomenon
is described in ref. 44. Furthermore, it seems that not only the premonitory
phenomena but the model itself might be simplified even further.

While our model was tested against the observed dynamics of seismi-
city, the model transcends earthquake-specific processes and phenomena.
The broader aspects it encompasses include regime switching, clustering
(demonstrated in ref. 1), long-range correlations, and deviations from scale
invariance. It seems worthwhile to explore its application to other hierar-
chical dissipative systems, which involve the loading — failure — healing
sequence. Likely candidates are geotechnical constructions, volcanic
regions, and socio-economic systems.

ACKNOWLEDGMENTS

This study was supported by the James S. McDonnell Foundation’s
21st Century Collaborative Activity Award for Studying Complex Systems
(I.Z. and V.K.-B.) and by an international supplement (I.Z.) to NSF Grant
ATM-00-82131 (M.G.).

REFERENCES

1. I. Zaliapin, V. Keilis-Borok, and M. Ghil, A Boolean delay equation model of colliding
cascades. Part I: Multiple seismic regimes, J. Stat. Phys. 111:815-837 (2003).



858 Zaliapin et al.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. A. Gabrielov, V. Keilis-Borok, 1. Zaliapin, and W. I. Newman, Critical transitions in
colliding cascades, Phys. Rev. E 62:237-249 (2000).

. A. M. Gabrielov, I. V. Zaliapin, W. I. Newman, and V. I. Keilis-Borok, Colliding casca-
des model for earthquake prediction, Geophys. J. Int. 143:427-437 (2000).

. D. Dee and M. Ghil, Boolean difference equations, I: Formulation and dynamic behavior,
SIAM J. Appl. Math. 44:111-126 (1984).

. M. Ghil and A. P. Mullhaupt, Boolean delay equations. II: Periodic and aperiodic solu-
tions, J. Stat. Phys. 41:125-173 (1985).

. V. L. Keilis-Borok and P. N. Shebalin, eds., Dynamics of lithosphere and earthquake
prediction, Phys. Earth Planet. Inter. 111, Special Issue, 111:179-330 (1999).

. V. Keilis-Borok, Earthquake prediction: State-of-the-art and emerging possibilities, Annu.
Rev. Earth Planet. Sci. 30:1-33 (2002).

. S. C. Jaume and L. R. Sykes, Evolving towards a critical point: A review of accelerating
seismic moment/energy release prior to large and great earthquakes, Pure Appl. Geophys.
155:279-306 (1999).

. A.J. Lichtman, The Keys to the White House, Lanham, ed. (Madison Books, 1996).

. V. Keilis-Borok, J. H. Stock, A. Soloviev, and P. Mikhalev, Pre-recession pattern of six

economic indicators in the USA, J. Forecasting 19:65-80 (2000).

D. L. Turcotte, W. I. Newman, and A. Gabrielov, A statistical physics approach to earth-

quakes, in Geocomplexity and the Physics of Earthquakes, J. B. Rundle, D. L. Turcotte, and

W. Klein., eds. (American Geophysical Union, Washington, DC, 2000), pp. 83-96.

V. L. Keilis-Borok, Symptoms of instability in a system of earthquake-prone faults,

Physica D 77:193-199 (1994).

J. Rundle, D. Turcotte, and W. Klein, eds., Geocomplexity and the Physics of Earthquakes

(American Geophysical Union, Washington, DC, 2000).

C. J. Allegre, J. L. Le Mouel, and A. Provost, Scaling rules in rock fracture and possible

implications for earthquake prediction, Nature 297:47-49 (1982).

C. G. Sammis, D. Sornette, and H. Saleur, Complexity and earthquake forecasting, in SFI

Studies in the Science of Complexity, v. XXV, J. Rundle, D. L. Turcotte, and W. Klein,

eds. (Addison—Wesley, 1996).

T. Yamashita and L. Knopoff, Model for intermediate-term precursory clustering of

earthquakes, J. Geophys. Res. 97:19873-19879 (1992).

A. Gabrielov and W. I. Newman, Seismicity modeling and earthquake prediction:

A review, in Nonlinear Dynamics and Predictability of Geophysical Phenomena, W. 1.

Newman, A. Gabrielov, and D. L. Turcotte, eds., Geophysical Monograph, Vol. 83;

IUGG, Vol. 18 (1994).

A. 1. Gorshkov, V. I. Keilis-Borok, I. M. Rotwain, A. A. Soloviev, and I. A. Vorobieva,

On dynamics of seismicity simulated by the models of blocks-and-faults systems, Annali di

Geofisica XL 5:1217-1232 (1997).

Y. Huang, H. Saleur, C. Sammis, and D. Sornette, Precursors, aftershocks, criticality and

self-organized criticality, Europhys. Lett. 41:43-48 (1998).

W. I. Newman, D. L. Turcotte, and A. Gabrielov, Log-periodic behavior of a hierarchical

failure model with applications to precursory seismic activation, Phys. Rev. E 52:

48274835 (1995).

G. F. Pepke, J. R. Carlson, and B. E. Shaw, Prediction of large events on a dynamical

model of fault, J. Geophys. Res. 99:6769-6788 (1994).

M. G. Shnirman and E. M. Blanter, Mixed hierarchical model of seismicity: Scaling and

prediction, Phys. Earth Planet. Inter. 111:295-304 (1999).

G. S. Narkunskaya and M. G. Shnirman, Hierarchical model of defect development and

seismicity, Phys. Earth. Planet. Inter. 61:29-35 (1990).



A BDE Model of Colliding Cascades. Part Il 859

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

G. S. Narkunskaya and M. G. Shnirman, An algorithm of earthquake prediction, in
Computational Seismology and Geodynamics, Vol. 1 (AGU, Washington, D.C., 1994),
pp. 20-24.

V. G. Kossobokov and J. M. Carlson, Active zone size vs. activity: A study of different
seismicity patterns in the context of the prediction algorithm M8, J. Geophys. Res. 100:
6431-6441 (1995).

P. Shebalin, I. Zaliapin, and V. Keilis-Borok, Premonitory rise of the earthquakes’ corre-
lation range: Lesser Antilles, Phys. Earth Planet. Int. 122:241-249 (2000).

I. Zaliapin, V. I. Keilis-Borok, and G. Axen, Premonitory spreading of seismicity over the
fault network in Southern California: Precursor Accord, J. Geophys. Res. 107:2221
(2002).

G. Zoeller, S. Hainzl, and J. Kurths, Observation of growing correlation length as an
indicator for critical point behaviour prior to large earthquakes, J. Geophys. Res. 106:
2167-2176 (2001).

V. G. Kossobokov, L. L. Romashkova, V. I. Keilis-Borok, and J. H. Healy, Testing
earthquake prediction algorithms: Statistically significant advance prediction of the largest
earthquakes in the Circum-Pacific, 1992-1997, Phys. Earth Planet. Int. 111:187-196 (1999).
G. M. Molchan, O. E. Dmitrieva, I. M. Rotwain, and J. Dewey, Statistical analysis of the
results of earthquake prediction, based on burst of aftershocks, Phys. Earth Planet. Int.
61:128-139 (1990).

I. A. Vorobieva, Prediction of a subsequent large earthquake, Phys. Earth Planet. Inter.
111:197-206 (1999).

I. M. Gelfand, Sh. A. Guberman, V. I. Keilis-Borok, L. Knopoff, F. Press, E. Ya.
Ranzman, I. M. Rotwain, and A. M. Sadovsky, Pattern recognition applied to earthquake
epicenters in California, Phys. Earth Planet. Inter. 11:227-283 (1976).

F. Press and P. Briggs, Chandler wobble, earthquakes, rotation, and geomagnetic
changes, Nature (London) 256:270-273 (1975).

A. Press and C. Allen, Pattern of seismic release in the Southern California region,
J. Geophys. Res. 100:6421-6430 (1995).

J. W. Tukey, Exploratory Data Analysis (Addison—Wesley, Reading, Mass., 1977).

G. M. Molchan, Earthquake prediction as a decision-making problem, Pure Appl.
Geophys. 149:233-247 (1997).

L. V. Kantorovich and V. 1. Keilis-Borok, Earthquake prediction and decision-making:
Social, economic and civil protection aspects, in International Conference on Earthquake
Prediction: State-of-the-Art, Strasbourg, France (Scientific-Technical Contributions,
CSEM-EMSC, 1991), pp. 586-593.

W. I. Newman, A. Gabrielov, and D. L. Turcotte, eds., Nonlinear dynamics and predict-
ability of geophysical phenomena, in Geophys. Monographs Ser. (AGU, Washington, DC,
1994), p. 83.

V. L. Keilis-Borok and L. N. Malinovskaya, One regularity in the occurrence of strong
earthquakes, J. Geophys. Res. 69:3019-3024 (1964).

L. Knopoff, T. Levshina, V. I. Keilis-Borok, and C. Mattoni, Increased long-range
intermediate-magnitude earthquake activity prior to strong earthquakes in California,
J. Geophys. Res. 101:5779-5796 (1996).

C. G. Bufe and D. J. Varnes, Predictive modeling of the seismic cycle of the Greater San
Francisco Bay region, J. Geophys. Res. 98:9871-9883 (1993).

D. D. Bowman, G. Ouillon, C. G. Sammis, A. Somette, and D. Sornette, An observa-
tional test of the critical earthquake concept, J. Geophys. Res. 103:24359-24372 (1998).

P. Yiou, D. Sornette, and M. Ghil, Data-adaptive wavelets and multi-scale SSA, Physica
D 142:254-290 (2000).



860 Zaliapin et al.

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

. V. L. Keilis-Borok, L. Knopoff, and I. M. Rotwain, Bursts of aftershocks, long-term pre-
cursors of strong earthquakes, Nature (London) 283:258-263 (1980).

V. G. Kossobokov, B. K. Rastogi, and V. K. Gaur, On self-similarity of premonitory
patterns in the regions of natural and induced seismicity, P. Indian AS-Earth 98:309-318
(1989).

B. Romanowicz, Spatiotemporal patterns in the energy-release of great earthquakes,
Science 260:1923-1926 (1993).

E. V. Vilkovich and M. G. Shnirman, Epicenter migration waves: Examples and models,
Comput. Seism. 14:27-37 (1982).

K. Mogi, Seismicity in Western Japan and long-term forecasting, in Earthquake Predic-
tion: An International Review, Maurice Ewing Series, Vol. 4 (American Geophysical
Union, Washington, DC, 1981), pp. 43-51.

A. G. Prozorov and S. Yu. Schreider, Real time test of the long-range aftershock algo-
rithm as a tool for mid-term earthquake prediction in Southern California, Pure Appl.
Geophys. 133:329-347 (1990).

J. Rice and J. Gu, Earthquake after effects and triggered seismic phenomena, Pure Appl.
Geophys. 121:187-219 (1983).

J. Gomberg, M. L. Blanpied, and N. M. Beeler, Transient triggering of near and distant
earthquakes, BSSA 87 2:294-309 (1997).

D. P. Hill, P. A. Reasenberg, A. Michael, W. J. Arabasz, G. Beroza, D. Brumbaugh, J. N.
Brune, R. Castro, S. Davis, D. dePolo, W. L. Ellsworth, J. Gomberg, S. Harmsen,
L. House, S. M. Jackson, M. Johnston, L. Jones, R. Keller, S. Malone, L. Munguia,
S. Nava, J. C. Pechmann, A. Sanford, R. W. Simpson, R. S. Smith, M. Stark, M. Stickney,
A. Vidal, S. Walter, V. Wong, and J. Zollweg, Seismicity remotely triggered by the mag-
nitude 7.3 Landers, California, earthquake, Science 260:1617-1623 (1993).

C. D. Ferguson, W. Klein, and J. B. Rundle, Long range earthquake fault models, Com-
puters in Physics 12:34-40 (1998).

E. Preston, J. S. de la Martins, J. B. Rundle, M. Anghel, and W. Klein, Models of
earthquake faults with long-range stress transfer, Computing in Science and Engineering
2:34-41 (2000).

A. Soloviev and 1. Vorobieva, Long-range interaction between synthetic earthquakes
in the model of block structure dynamics, Fifth Workshop on Non-Linear Dynamics and
Earthquake Prediction, 4-22 October 1999, Trieste, ICTP, H4.SMR /1150-4 (1999), 18 pp.
R. Rammal, G. Toulous, and M. A. Virasoro, Ultrametricity for physicists, Rev. Mod.
Phys. 58:765-788 (1986).

R. E. Haberman, Precursory seismicity pattern: Stalking the mature seismic gap, in
Earthquake Prediction: An International Review, Maurice Ewing Series, Vol. 4 (American
Geophysical Union, Washington, DC, 1981), pp. 29-42.

W. Smith, The b-value as an earthquake precursor, Nature 289:136-139 (1981).

A. Prozorov and F. J. Sabina, Study of seismic properties in the Mexico region, Geophys.
J.R. Astr. Soc. 76:317-336 (1984).

V. L. Keilis-Borok, A worldwide test of three long-term premonitory seismicity patterns:
A review, Tectonophysics 85:47-60 (1982).

V. L. Keilis-Borok and V. G. Kossobokov, Premonitory activation of earthquake flow:
Algorithm M8, Phys. Earth Planet. Inter. 61:73-83 (1990).

V. G. Kossobokov, V. 1. Keilis-Borok, and S. W. Smith, Localization of intermediate-
term earthquake prediction, J. Geophys. Res. 95:19763-19772 (1990).

V. L. Keilis-Borok and I. M. Rotwain, Diagnosis of time of increased probability of strong
earthquakes in different regions of the world: Algorithm CN, Phys. Earth Planet. Inter.
61:57-72 (1990).



A BDE Model of Colliding Cascades. Part Il 861

64. 1. Rotwain and O. Novikova, Performance of the earthquake prediction algorithm CN in
22 regions of the world, Phys. Earth Planet. Inter. 111:207-214 (1999).

65. 1. A. Vorobieva and T. A. Levshina, Prediction of a second large earthquake based on
aftershock sequence, in Computational Seismology and Geodynamics, Vol. 2 (American
Geophys. Union, Washington, DC, 1994), pp. 27-36.



	1. INTRODUCTION
	2. EARTHQUAKE SEQUENCE
	3. PSPS AND THEIR INDIVIDUAL PERFORMANCE
	4. COLLECTIVE PERFORMANCE OF PSPS
	5. DISCUSSION
	ACKNOWLEDGEMENTS

